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The application of Hankel transforms to the three-dimensional axisymmetric 
problems of the theory of elasticity, in the case when the modulus of elasticity 
is a power function of depth, leads to a system of ordinary differential equations 
[l] whose solution presents some mathematical difficulty. Therefore, in [l, 21 
the solution of these problems has been carried out by applying transformations 

expounded in p]. 
In the sequel we construct the fundamental system of solutions of the ordinary 

differential equations mentioned above and we give the solution for two bound- 

ary value problems in the case of very special conditions. 

1. In the case of axial symmetry, the displacement equations of the theory of elas- 
ticity have the form 

(i,+2P)[$++$-+]+(~+P)~+P$+ 

6P - _%+$]_9 
a2 II 

I++- [ ', -g]+(i.+P)[g ++$]+0+2p)g- 

zi[g_+p]+ a '2;z+i) +o 

We apply the Fourier method, by using the Hankel’s transforms in the following form 
m cc 

u (r, z) = 
5 

cp (s, z) Ji (ST) ds, w (r, z) = 
s 

f (s, z) JO (ST) ds 

0 0 
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We obtain a system of ordinary differential equations with variable coefficients [l] 

(1.1) 

Let us consider the case when Lame coefficients have the form p = p,,aa, h = J.,,zp. 
We perform the change: k = D, g = (h, + 2pO) / pO and we try to represent the sys- 
tem of differential equations as follows : 

C d I[ d 
Ezi=-A Ex-B 

cp IL 1 f =o 

Here A, 3 are the coefficient matrices and E is the identity matrix. The ~ndamental 
system of solutions can be represented in this case in the form 

If 
$b’ $a \ @P’,dk 

ko 
where $b and $‘a is the fundamental system of solutions of the equations 

d 
Ex--B 

t 
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Ex-4 cp- 
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(1.2) 

Cl*31 

We write the initial system (1.1) in matrix form 

For the determination of the unknown matrices A and B we obtain a system of matrix 
equations 

A+B=G, -_4Bz=H 

We seek the solution of the matrix system in the form of the series 

A = r)A,,k-n, 8 = -pnk-" 
n 1L 

(1.4 

As a result of such a substitution we obtain a system of matrix algebraic equations. 
Let us consider the case when the series (1.4) are truncated and consist of two terms, 

i. e. A = A,, = A,k-‘, B = B, + l&k-* 

In this case we obtain the following algebraic system of matrix equations: 

A,+B,=G,, A&P,=-HH,, A,+B,=Cl 

A&, + A$, = - H,, A,B, + B, = 0 
Here 

(1.5) 
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The system (1.5) does not always have a solution, in particular, it has a solution when 
the eigenvalues of the matrices A,, and B, coincide. The system of the first two matrix 
equations (1.5) is equivalent to the system 

AoG, - -4,’ + H, = 0, G,B, - Bo2 + H, = 0 

The solution of these equations is given in [4] 

A, = [- H, - m,mJ] [G, - (ms + m,)E]-’ 

B, = [G, - (ml + m2) El-1 [-- H, - m,m,E] 

where the eigenvalues of the matrices A,, and B, are obtained from the equation 

dat [G,m - m2E + Ho] = 0 

The system formed by the third and the fourth equations of (1.5) can be reduced to the 
equation A,B, - B,B, = - HI - G,B, 

If the eigenvalues of the matrices A,, and B, are distinct, the system has a unique solu- 

tion, if these eigenvalues are identical, then the system is either inconsistent or it has 
infinite number of solutions in the form of the sum of a particular solution and the gene- 

ral solution of the homogeneous equation. The solution of the system formed by the 
third and the fifth equations of (1.5). in the case when G, is a multiple of the identity 

matrix (G, = -_BE), has the form 

A1 = - BE - B,, 
0 0 

B1 _ ‘I’-1 

II II O&g 
(solution 1) 

Ai = - E, B, = (i - B) E (solution 2) 

Here T is any nonsingular matrix. 
As a result we obtain the following solutions of Eqs. (1.5): 

Solution 1 

1 

A1 = 1 - g 
(P + 4 I- -l&G 
~/l&g-’ pg - 3-3 _ 1 I/ 

1 - 11 

B1 = 1 - g 1/11z*g-1 -I/ - vlllzg 
12 II 11 = P (2 - d + g 

’ 12=1-/-a 

Solution 2 
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2. We consider both solutions. 
Solution 1. The system of equations of the first degree (1.2). (1.3) can be 

reduced to the Whittaker’s equation with solutions in the form of Whittaker’s functions 

(2.1) and (2.2) corresponding to 1 = l!al/l,l,g-l 

w_,, p,‘2 Vk), wt. p/z (29 (2.1) 

wr, p/a (--2k)p W-I, p,a t2k) (2.2) 

In certain special cases, these solutions can be expressed as polynomials [5]. 
For p = g / (g - 2) , the solution can be expressed in terms of Bessel’s functions and 

the fundamental system of solutions is obtained from the expressions 

qb = kg-412 (g-2) 

// 

KP/2_1 (4 - Ip/2-1 tk) 

Kpi2 (k) Ip/2 (4 

Q, = k-p,‘2 

I 

- gK_p,2 (k) &,:! (k) 

&p,a @) I,+/2 (k) I 

For p = - 1 , the fundamental system is determined from the expressions 

g,= ke I! 
-k 

ke” 

(1 + k) e-k (1 - k) ek u 

- ge;$ - k) - g;;r(j + k) 

I 

(2.3) 

Solution 2. In this case the condition fi = (g + i) / (g - 1) is imposed on p. 
The fundamental system is determined from the expressions 

ek e-k 

ek 
-k e 

8 -7 

(2.4) 

Example 1. In geophysics it presents interest to solve the Boussinesq problem for 
g = 2.8, which corresponds to 

h, = 2.4 x 1Oti g/cm se?, p0 = 3 x 1011 g / cm set’ 

For the sake of simplicity we consider the case when g = 3, B = 2, which corresponds 

to the Solution 2. The boundary conditions have the form 

z = 0 T.7 =o, b, = - 6 (r), lim u (r, 2) = 0, lim w (r, 2) 
z=zg z=zo I z-m 1 *Aa 

The fundamental system of solutions is 

!i:::;j=;l 
P (s) es’ + Q (s) e e-S’ + R (s) ezs (zs + 1) + U (s) e-*’ (zs - 1) 

- P (s) es2 -+ Q (s) PdSL -+ R(s)e*‘(zs-1) + U(s)e --LS (2s + 1) 

From the conditions at infinity we obtain P (s) z R (s) G 0. Substituting the solution 

into the boundary conditions, we obtain the values of Q (s), U (s). 
Finally, the solutions have the form 
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1 2 
21 (r, z) = - 

\ 
- 

(z,.+ [2sz0 (2 - 20) + s (z - 2z,j)] e-(z-zo) ’ 

2npoz; L zs [4 (z ,s)~ + 12z,s + 61 J1 (FS) ds 

0 

1 m 
w (r, z) = - 

(zu+ [2sz:, (z - Z(I) + s (z A,- 22 ,) + 21 e-(z-zO)s 

2nP”z; s is [4 (zj+ + 122 ,s + 61 J,, (rs) do 

0 

Example 2. A thick plate under the action of a concentrated force. We take 
Lame’s coefficients in the form h = h, / Z, p = p,, / Z, which corresponds to the Solu- 
tion 1. For z = 0 the plate is absolutely rigid. 

The boundary conditions are 

Making use of the fundamental system of solutions (2.3), we obtain the solution at the 
boundary z = z. in the form 

1 y 

U (r) = 2npozo I 
R zJs (1 + ch (2~0s)) - sh (2~ ,s,] 

2z,,s [zds (e - 1) X + 2g sh (2~0s) + 2~~1 
J1 (rs) ds 

0 

2&x? 

c ch (k) - 1 
X= k dk 

0” 

The formula for w (r) has a similar form. 
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